Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Spin-Lattice relaxation in CaB₆ - J. L. Gavilano¹, Sh. Mushkolaj¹, D. Rau¹, H. R. Ott¹, A. Bianchi², D. P. Young², Z. Fisk² - ¹ Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland - National Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 We report the results of 11 B-NMR measurements on CaB_6 . In an attempt to achieve a material with chemical composition close to stoichiometric CaB_6 , a slight excess of Ca was used in the sample preparation. The physical properties of CaB_6 reveal a semiconducting behavior with no indication of ferromagnetic order. We find that for CaB_6 the variation of T_1^{-1} with temperature is similar to $T_1^{-1}(T)$ of $Ca_{0.995}La_{0.005}B_6$ and SrB_6 , but the magnitude of the relaxation rate of the former is one order of magnitude larger. This observation is interpreted as an indication that CaB_6 still contains a non-negligible amount of self-doping, but the corresponding magnetic moments do not order spontaneously.